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LECTURE 12

• Vector spaces, cont'd

• Subspaces

• Linear independence



Example. (A REALLY outlandish one)

Let X be any set. We will use 𝑉 = (2𝑋,  ) as the Abelian group 
of vectors, where  denotes the operation of symmetric difference 
of sets, 𝐴𝐵 = (𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵). We will also use ℤ2, ۩, ⨂ as 
the field of scalars. Scaling is defined as follows: 

for every set 𝐴, 0𝐴 =  and 1𝐴 = 𝐴.

Comprehension.
Check that 𝑉, ℤ2,⋅ is a vector space.



FAQ. 1

What the hell is a vector?
The only proper answer to this question, even though a little 
tautological, is "A vector is an element of a vector space". The 
previous example teaches us that sets can be vectors. In other 
examples we have seen numbers, complex numbers, n-tuples of 
numbers, functions, polynomials etc. playing the role of vectors.



FAQ. 2
What the hell is a scalar then?

Well, you probably realize that the answer will be equally trivial 
(or disturbing). An element of a field 𝕂 may be called a scalar if 
somebody decides to construct a vector space using 𝕂 as the 
second element of the ordered triple constituting a vector space. 
In particular, if we consider 𝕂 a vector space over itself then all 
elements of 𝕂 are at the same time scalars and vectors.



Example.
In the vector space ℝ over the field ℝ, real numbers are both 
vectors and scalars. 

In ℂ over ℝ complex numbers are vectors, real numbers are 
scalars. 

In 2𝑋 over ℤ2vectors are subsets of X and there are but two 
scalars, 0 and 1.

What makes study of general vector spaces useful is that 
whatever facts we discover about vector spaces in general they 
are true in each of these spaces. 

For example, we gave the following theorem:



Theorem. (Arithmetic properties of vector spaces)
In every vector space 𝑉 over a field 𝕂

1. for every vector 𝑣, 0 ⋅ 𝑣 = Θ, (Θ is the zero vector, 0 is the 
zero scalar).

2. for every scalar 𝑝, 𝑝 ⋅ Θ = Θ.

3. for every scalar p and for every vector 𝑣, (−𝑝) ⋅ 𝑣 = 𝑝 ⋅
(−𝑣) = −(𝑝 ⋅ 𝑣).

4. for every scalar p and for every vector 𝑣, 𝑝 ⋅ 𝑣 = Θ implies 
𝑝 = 0 or 𝑣 = Θ.

Comprehension. (Prove the theorem).

Hint. 0 ⋅ 𝑣 = (0 + 0) ⋅ 𝑣



Definition.

Let 𝑉 be a vector space over 𝕂. A subset 𝑊 ⊆ 𝑉 is called a

subspace of 𝑉 if 𝑊 is a vector space over 𝕂 under "the same"

operations of vector addition and scalar multiplication.

Theorem.

𝑊 is a subspace of 𝑉 if and only if

1. ∀𝛼 ∈ 𝕂 ∀𝑤 ∈ 𝑊 𝛼𝑤 ∈ 𝑊 (𝑊 is "𝑐𝑙𝑜𝑠𝑒𝑑 𝑢𝑛𝑑𝑒𝑟 𝑠𝑐𝑎𝑙𝑖𝑛𝑔")

2. ∀𝑤1, 𝑤2 ∈ 𝑊 𝑤1 + 𝑤2 ∈ 𝑊 (𝑊 is "𝑐𝑙𝑜𝑠𝑒𝑑 𝑢𝑛𝑑𝑒𝑟 𝑣𝑒𝑐𝑡𝑜𝑟 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛")

3. 𝑊 ≠ ∅ (or, equivalently Θ𝑉 ∈ 𝑊) (𝑊 is 𝑛𝑜𝑛𝑒𝑚𝑝𝑡𝑦, 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 Θ).



Proof. (Outline)

The "only if" part is trivial.

The "if" part: 1.,2. and 3., together with last lecture theorem 
imply that (𝑊, +) is a subgroup of (𝑉, +) and that it is closed 
under scaling. The remaining axioms of a vector space follow 
from the simple fact that all vectors of 𝑊 belong to 𝑉, which 
means they satisfy all required identities. QED



Comprehension. (subspaces)
Decide which of the following subsets are subspaces:

1. 𝑥, 𝑦 ∈ ℝ2: 𝑥𝑦 ≥ 0 in ℝ2 over ℝ

2. 𝑥, 𝑦 ∈ ℝ2: 𝑥 + 𝑦 ≥ 0 in ℝ2 over ℝ

3. 𝑥, 𝑦 ∈ ℝ2: 𝑥 = 5𝑦 in ℝ2 over ℝ

4. 𝑥, 𝑦 ∈ ℝ2: 𝑥2 = 𝑦 in ℝ2 over ℝ

5. 𝑥, 𝑦, 𝑧 ∈ ℝ3: 𝑥 + 𝑦 − 3𝑧 = 1 in ℝ3 over ℝ

6. 𝑎, 𝑏 , 𝑎 , ∅ in 2 𝑎,𝑏,𝑐 over ℤ2

7. The set of all finite sets from 2ℕ over ℤ2

Comprehension self-test.

Find all subspaces of ℝ2 over ℝ (with usual operations).



Definition.

Let 𝑉 be a vector space over a field 𝕂, let and let 𝑣1, … , 𝑣𝑛 ∈ 𝑉. 
A vector 𝑣 is called a linear combination of vectors 𝑣1, … , 𝑣𝑛 iff 
there exist 𝑎1, … , 𝑎𝑛 ∈ 𝕂 such that 𝑣 = 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛. 

We also use the sigma notation, 𝑣 = σ𝑠=1
𝑛 𝑎𝑠𝑣𝑠.

We say that 𝑣 is the linear combination of vectors 𝑣1, … , 𝑣𝑛 with 
coefficients 𝑎1, … , 𝑎𝑛.

A common problem in linear algebra is to decide whether a 
given vector is or is not a linear combination of other given 
vectors. 



Example.

If you fail ETMAG you might decide to blow-up Polytechnica in
revenge. A recipe found on the darknet says that mixing 30% of 
ingredient A, 50% of B and 20% of C will provide an explosive. A 
leading branch of toothpaste T consists of 10, 60 and 30 percent 
of those, a scouring powder S has 5, 80 and 15 and a washing 
machine powder P has 25, 50 and 25. Can you get your explosive 
mixing those in some proportion?

In other words, do there exist coefficients t, s, p such that 

(30,50,20) = 𝑡(10,60,30) + 𝑠(5,80,15) + 𝑝(25,50,25)

i.e., is (30,50,20) is a linear combination of (10,60,30), (5,80,15) 
and (25,50,25).

Note. In this example we must also require that all coefficients are  0.



Comparing component-by-component the left-hand side of

(30,50,20) = t(10,60,30) + s(5,80,15) + p(25,50,25)

to the right-hand side we get a system of equations

(∗) ቐ

30 = 10𝑡 + 5𝑠 + 25𝑝
50 = 60𝑡 + 80𝑠 + 50𝑝
20 = 30𝑡 + 15𝑠 + 25𝑝

We can phrase our problem as: 

Does the vector (30,50,20) belong to the set of all possible linear 
combinations of (10,60,30), (5,80,15) and (25,50,25)?

Or: 

Is the system of equations (∗) solvable?



Definition.

Let 𝑉 be a vector space over a field 𝕂 and let 𝑆 ∈ 𝑉 be a set of 
vectors. The span of the set S is the set 𝑠𝑝𝑎𝑛 𝑆 ⊆ 𝑉 defined by

𝑠𝑝𝑎𝑛 𝑆 = {𝑎1𝑣1 + … + 𝑎𝑛𝑣𝑛|𝑛 ∈ ℕ ∧ ∀𝑖 (𝑎𝑖∈ 𝕂 ∧ 𝑣𝑖 ∈ 𝑆)} if 
𝑆 ≠ ∅ and 

𝑠𝑝𝑎𝑛 𝑆 = {Θ} if 𝑆 = ∅.

In plain language, 𝑠𝑝𝑎𝑛 𝑆 is the set of all possible linear 
combinations of vectors from 𝑆.

Example.

Consider ℝ3 and two vectors 1, 2, 0 , 2, 4, 0 ∈ ℝ3.

𝑠𝑝𝑎𝑛 1, 2, 0 , 0, 0, 3 = 𝑎 1, 2, 0 + 𝑏 2, 4, 0 |𝑎, 𝑏 ∈ ℝ =

𝑎 + 2𝑏, 2𝑎 + 4𝑏, 0 | 𝑎, 𝑏 ∈ ℝ = 𝑎 + 2𝑏, 2(𝑎 + 2𝑏), 0 | 𝑎, 𝑏 ∈ ℝ =
𝑐 1,2,0 𝑐 ∈ ℝ = {(𝑥, 𝑦, 𝑧)|𝑦 = 2𝑥 & 𝑧 = 0}. This is the line passing 

thorough the origin and 𝐴 1,2,0 . It is a subspace in ℝ3.



Theorem.

Let 𝑉 be a vector space over a field 𝕂 and let 𝑆 be a subset of 𝑉. 

Then W = 𝑠𝑝𝑎𝑛(𝑆) is a subspace of 𝑉.

Proof.

If 𝑆 is empty, 𝑠𝑝𝑎𝑛 𝑆 = {Θ} – a subspace  of 𝑉. 

If 𝑆 ≠ ∅ and 𝑢, 𝑣 ∈ 𝑠𝑝𝑎𝑛(𝑆), we can choose vectors 𝑣1, … , 𝑣𝑛 ∈
𝑆 so that 𝑢 = 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛 and 𝑣 = 𝑏1𝑣1 + … + 𝑏𝑛𝑣𝑛

for some 𝑎𝑖 , 𝑏𝑖 ∈ 𝕂. Clearly, 𝑢 + 𝑣 = 𝑎1𝑣1 + … + 𝑎𝑛𝑣𝑛 +
𝑏1𝑣1 + … + 𝑏𝑛𝑣𝑛 = (𝑎1 + 𝑏1)𝑣1 + … + (𝑎𝑛 + 𝑏𝑛)𝑣𝑛 ∈ 𝑊.
For every scalar 𝑝, 𝑝𝑢 = 𝑝 𝑎1𝑣1 + … + 𝑎𝑛𝑣𝑛 = (𝑝𝑎1)𝑣1 +
… + (𝑝𝑎𝑛)𝑣𝑛 ∈ 𝑊. QED



Theorem. (Alternate definition of span) 

Let 𝑆 ⊆ 𝑉. Then 𝑠𝑝𝑎𝑛(𝑆) is the smallest subspace of 𝑉 containing 𝑆. 

Proof.

Every subspace of 𝑉 containing 𝑆 must contain all linear 

combinations of vectors from 𝑆. QED

We call 𝑠𝑝𝑎𝑛(𝑆) the subspace (of  𝑉) spanned by S.

One advantage of the alternate definition over the other one is that it 

covers the case 𝑆 = ∅ without branching.



Fact. 

Let 𝑉(𝑆) denote the set of all subspaces of 𝑉 containing 𝑆. Then

span(S) = ሩ

𝑇∈𝑉(𝑆)

𝑇

Proof. It is enough to show that intersection of a collection of 
subspaces is a subspace of 𝑉, which is easy. (Each contains  so 
the intersection does, too, etc.). QED



Examples.

In ℂ over ℝ:

𝑠𝑝𝑎𝑛 1, 𝑖 = 𝑎 ⋅ 1 + 𝑏 ⋅ 𝑖 𝑎, 𝑏 ∈ ℝ = ℂ

𝑠𝑝𝑎𝑛({1 + 𝑖 , 2 + 𝑖}) = ℂ

𝑠𝑝𝑎𝑛 𝑖 + 2, 2𝑖 + 4 = 2𝑎 + 𝑎𝑖: 𝑎 ∈ ℝ ≠ ℂ

In ℝ[𝑥] over ℝ:

𝑠𝑝𝑎𝑛 𝑥2, 𝑥, 1 = {𝑎𝑥2 + 𝑏𝑥 + 𝑐|𝑎, 𝑏, 𝑐 ∈ ℝ} – the set of all 
polynomials of degree at most 2.

In 2𝑋 over ℤ2:

𝑠𝑝𝑎𝑛 𝐴, 𝐵 = ∅, 𝐴, 𝐵, 𝐴 ÷ 𝐵 because 𝐴 ÷ 𝐴 ÷ 𝐵 =
𝐴 ÷ 𝐴 ÷ 𝐵 = ∅ ÷ B = 𝐵.



Theorem (Properties of span)

Let 𝑉 be a vector space over a field 𝕂 and let 𝑆, 𝑇 ⊆ V. Then 

1. 𝑆 ⊆ 𝑠𝑝𝑎𝑛(𝑆)

2. 𝑠𝑝𝑎𝑛 𝑠𝑝𝑎𝑛 𝑆 = 𝑠𝑝𝑎𝑛 𝑆

3. 𝑆 ⊆ 𝑇 ⇒ 𝑠𝑝𝑎𝑛(𝑆) ⊆ 𝑠𝑝𝑎𝑛(𝑇)

4. ∀𝑣 ∈ 𝑉 (𝑣 ∈ 𝑠𝑝𝑎𝑛 𝑆 ⇔ 𝑠𝑝𝑎𝑛 𝑆 = 𝑠𝑝𝑎𝑛(𝑆 ∪ 𝑣 )

Proof.

1. 2. and 3. are rather obvious.



Proof of 4.
∀𝑣 ∈ 𝑉 (𝑣 ∈ 𝑠𝑝𝑎𝑛 𝑆 ⇔ 𝑠𝑝𝑎𝑛 𝑆 = 𝑠𝑝𝑎𝑛(𝑆 ∪ 𝑣 )

(⇒) From 3., 𝑠𝑝𝑎𝑛 𝑆 ⊆ 𝑠𝑝𝑎𝑛(𝑆 ∪ 𝑣 ). Suppose 𝑤 ∈
𝑠𝑝𝑎𝑛(𝑆 ∪ 𝑣 ) i.e., 𝑤 = 𝑎𝑣 + 𝑏1𝑢1 + ⋯ + 𝑏𝑘𝑢𝑘 for some 
𝑢1, … , 𝑢𝑘 ∈ 𝑆 and some scalars 𝑏1, … , 𝑏𝑘. 𝑣 ∈ 𝑠𝑝𝑎𝑛 𝑆 means 
𝑣 = 𝑐1𝑣1 + ⋯ + 𝑐𝑛𝑣𝑛 for some 𝑣1, … , 𝑣𝑛 ∈ 𝑆 and 𝑐1, … , 𝑐𝑛 ∈ 𝕂. 
Hence, 𝑤 = 𝑎 𝑐1𝑣1 + ⋯ + 𝑐𝑛𝑣𝑛 + 𝑏1𝑢1 + ⋯ + 𝑏𝑘𝑢𝑘 =
𝑎𝑐1 𝑣1 + ⋯ + 𝑎𝑐𝑛 𝑣𝑛 + 𝑏1𝑢1 + ⋯ + 𝑏𝑘𝑢𝑘 ∈ 𝑠𝑝𝑎𝑛(𝑆).

(⇐) 𝑠𝑝𝑎𝑛 𝑆 = 𝑠𝑝𝑎𝑛(𝑆 ∪ 𝑣 ) means that every vector from 
𝑠𝑝𝑎𝑛(𝑆 ∪ 𝑣 ), including 𝑣, belongs to 𝑠𝑝𝑎𝑛 𝑆 . QED



Definition.

Let 𝑉 be a vector space over a field 𝕂 and let 𝑆 = {𝑣1, … , 𝑣𝑛} be 
a set of vectors from 𝑉. 𝑆 is said to be linearly independent iff

(∀𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝕂)(𝑎1𝑣1 + 𝑎2𝑣2 + ⋯ + 𝑎𝑛𝑣𝑛 = Θ ⇒ 𝑎1 =
𝑎2 = ⋯ = 𝑎𝑛 = 0)

If 𝑆 is not linearly independent, 𝑆 is said to be linearly 
dependent.

Remark.
This definition may be confusing: it is NOT that the linear 
combination with all zero coefficients is Θ (which is trivially true 
for any set of vectors, linearly independent or not) but the other 
way around, the condition for a set to be linearly independent is 
that the only way to make a linear combination of its vectors Θ is 
to make all coefficients 0.



Examples.

1. Is 𝑆 = 1,0,1 , 1,1,0 , 0,1,1 linearly independent in ℝ3?
Suppose 𝑎 1,0,1 + 𝑏 1,1,0 + 𝑐 0,1,1 = (0,0,0). This means 
𝑎 + 𝑏 = 0
𝑏 + 𝑐 = 0
𝑎 + 𝑐 = 0. 
Subtracting the second equation from the first we get 𝑎 − 𝑐 = 0,
i. e. , 𝑎 = 𝑐. Replacing a with c in the third we get 2𝑐 = 0 hence, 
𝑐 = 0. This easily implies that 𝑏 = 𝑎 = 0. The answer is YES.

2. The empty set ∅ is linearly independent.



Examples.

3. Is 𝑆 = 1,0, −1 , 1,1,0 , 0,1,1 linearly independent in ℝ3? 

Suppose 𝑎 1,0, −1 + 𝑏 1,1,0 + 𝑐 0,1,1 = (0,0,0). Then

ቐ
a + b = 0

b+c = 0

−a+ c = 0

(e1+e3) → ቐ
b+c = 0

b+c = 0

−a+c =0

(e1-e2) →

ቐ
0 = 0

b+c = 0

−a+c =0

so, 𝑎 = 𝑐, 𝑏 = −𝑐 and no restrictions on 𝑐. Putting 𝑐 = 1 we 

get 𝑎 = 1 and 𝑏 = −1 i.e., we have found non-zero 

coefficients for our linear combination. 

Conclusion: The set is linearly dependent.

Notice: In example 3, 𝑣1 = 𝑣2 − 𝑣3. This is no coincidence.



Theorem.

Let 𝑉 be a vector space over a field 𝕂. A set 𝑆 = 𝑣1, 𝑣2, … , 𝑣𝑛 ⊆ V
is linearly independent iff no vector from 𝑆 is a linear combination 
of the remaining 𝑛 − 1 vectors. 

Proof. (⇒, by contraposition) 
Suppose a vector from 𝑆 is a linear combination of the other vectors. 
Without loss of generality, we may assume that 𝑣𝑛 is one such, i.e., 
𝑣𝑛 = 𝑎1𝑣1 + ⋯ + 𝑎𝑛−1𝑣𝑛−1. We may write Θ = 𝑎1𝑣1 + ⋯ +
𝑎𝑛−1𝑣𝑛−1 + −1 𝑣𝑛. In every field (−1) ≠ 0 hence, the set 
{𝑣1, 𝑣2, … , 𝑣𝑛} is linearly dependent.

Notice:
The phrase "Without loss of generality" is used when, instead of 
considering an arbitrary case (here some 𝑣𝑘), we consider a specific 
one (here 𝑣𝑛) because, like here, 
(a) it makes no difference
(b) it simplifies notation.



Proof.(⇐, also by contraposition) 
Suppose {𝑣1, 𝑣2, … , 𝑣𝑛} is linearly dependent, i.e., there exist 
coefficients 𝑎1, 𝑎2, … , 𝑎𝑛, not all of them zeroes, such that Θ =
𝑎1𝑣1 + ⋯ + 𝑎𝑛−1𝑣𝑛−1 + 𝑎𝑛𝑣𝑛. Without losing generality, we 
may assume that 𝑎𝑛 ≠ 0 (we can always re-order 𝑆 so that the 
vector with the non-zero coefficient is the last one). So

𝑎𝑛𝑣𝑛 = (−𝑎1)𝑣1 + ⋯ + (−𝑎𝑛−1)𝑣𝑛−1

Since 𝑎𝑛, being a nonzero scalar is invertible (w.r.t. multiplication 
in the field 𝕂, we have 

𝑣𝑛 = −𝑎1𝑎𝑛
−1 𝑣1 + (−𝑎2𝑎𝑛

−1)𝑣2 + … + (−𝑎𝑛−1𝑎𝑛
−1)𝑣𝑛−1. QED


